THE DEVELOPMENT AND APPLICATION OF EXTRUDED SILICONE TUBING WITH OPTIMIZED PRECISION AND CONSISTENCY FOR FLUID MANAGEMENT APPLICATIONS

ADAM NADEAU
PROCESS TECH R&D MGR.
WHO IS SAINT-GOBAIN?

- Founded in 1665
- Corporate Headquarters is located in Paris, France
- Over 1000 Consolidated Companies
- Sales €40 Billion – Publicly held
- 170,000 Employees in 66 Countries
- Materials-based Company – Three Sectors
 - **Performance Plastics** is under the Innovative Materials sector
- **Fluid Systems division of Performance Plastics** is dedicated to Life Sciences Industries
 - Medical Components, Bioprocess Solutions, Filtration Technologies
 - Strong focus on Fluid Management (Fluid Systems division)
- **Key Medical Segments Served include:**
 - Cardiology
 - Nephrology
 - Nutrition
 - Ophthalmic
 - Surgical
 - IV therapy
AGENDA

1) Problem Statement
2) Development of a Solution
3) Three Key Aspects to Optimization
4) Final Case Study
PROBLEM STATEMENT

With rapidly advancing technologies and increasing regulatory requirements, today’s health care providers demand value-based medical devices that deliver enhanced patient outcomes while minimizing patient risk.

- Silicone tubing is well known as a high performing pump tubing

- Material knowledge & consistent processes are critical to minimize variation and improve performance
SOLUTION DEVELOPMENT
Understanding of the Process – Silicone Pump Tubing

Silica Ore → Silicone Gum Stock → Silicone Base → Silicone Compound

Final Product ← Secondary Processing Steps ← Extrusion ← Mix Final Compound

Silica
Compound

Ore

Silicone
Gum Stock

Silicone
Base

Silicone
Compound

Final Product

Secondary Processing Steps

Extrusion

Mix Final Compound

5 / The Development and Application of Extruded Silicone Tubing with Optimized Precision and Consistency for Fluid Management Applications
SOLUTION DEVELOPMENT
Identifying the Factors of Influence

Material Variation
- Lot-to-lot Variability & Varying Formulations
- Catalyst Type
- Material Hardness
- Rheology / Viscosity
- Filler Type/Content
- Other Additives

Process Variation
- Extruder/Former Type
- Cure Oven Type/Design
- Die Design
- Process Conditions
- Measurement Systems
- Automation/Controls
- Recipe Management

Impact to Product
- Quality
- Consistency
- Performance
- Dimensions
- Properties
SOLUTION DEVELOPMENT
Research and Optimization of Inputs

Lab built at Saint-Gobain R&D Center (Northboro, MA)

Varied Equipment for Testing
- Two extruders
- Die/head designs
- Various cure oven types
- Inline measurement systems
- Inline cutting
- Automation/closed loop control
- Recipe management & historian

- 1,000+ ft² “White Room”
- 70° +/-2°F with Controlled Humidity
- Positive Pressure
- $1.2 million investment
The Development and Application of Extruded Silicone Tubing with Optimized Precision and Consistency for Fluid Management Applications

3 Critical Aspects to Silicone Tube Performance Optimization

- Formulation Optimization
- Extrusion Consistency & Precision
- Application Knowledge

Result of Testing = Compass Technology
Patent Pending
AGENDA

1) Problem Statement
2) Development of a Solution
3) Three Key Aspects to Optimization
4) Final Case Study
ASPECT #1: MODELING SIMULATION & APPLICATION KNOWLEDGE

Key Benefits
- Provide quantitative understanding of the intrinsic operation of the pump mechanism
- Understand the effect on flow rate by the geometrical and physical properties of tubing through virtual DOEs to design the pumping device

Technical Challenge
- Strong solid (tube deformation) & fluid interaction (FSI) – a challenging task for simulation; new capability in last 5-10 years

Fluid domain changes shape but maintains topology (non-occluded)
Fluid domain has topology change (occluded)
Common FSI approach is Coupled Eulerian Lagrangian (CEL) method

- Given the extreme geometry distortion + high internal pressure (atm), CEL can not resolve the fluid/solid boundary

Smoothed Particle Hydrodynamics (SPH)

- New meshless technique uses discretize space with collection of points instead of grid
 - Capable of handling extreme deformation
- Invented by astronomers in 1970’s; gained acceptance in Mech. Eng. In last 20 years
- Available in top tier Explicit Finite Element Software within the last decade
 - Abaqus/Explicit, LS-Dyna, AutoDyan

Modeling presented at MD&M East, 2012

- R. Schwenker and H. Huang, PhD.
ASPECT #1: APPLICATION KNOWLEDGE / MODELING SIMULATION

Example of What Modeling Can Provide

Modeling can define optimal occlusion for a given material/geometry.

One can accurately model the impact of material and dimensional variation on flow rate.

cartridge gap translates to an occlusion % as noted

Normalized to 5 RPM

OC% = 22.5%

OC% = 12.2%

12 / The Development and Application of Extruded Silicone Tubing with Optimized Precision and Consistency for Fluid Management Applications
ASPECT #2: OPTIMIZED FORMULATION
What Goes into a Silicone Formulation?

Many Ingredients = Room for Variation

Spec. Example of Pt Silicone
- Off-the-shelf, Class VI

<table>
<thead>
<tr>
<th>Property</th>
<th>Spec</th>
<th>% of Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shore A</td>
<td>50 ± 5</td>
<td>10%</td>
</tr>
<tr>
<td>Modulus (psi)</td>
<td>250 ± 75</td>
<td>30%</td>
</tr>
</tbody>
</table>

When final pump accuracy needs <10%, need to drive out material variation
ASPECT #2: OPTIMIZED FORMULATION
How Can Variation Be Driven Out?

Custom Compounding

- Control over ingredients = reduced variation
- Customize properties based on application
- Resulting in better accuracy & consistency of tube and device
ASPECT #2: OPTIMIZED FORMULATION

Case Study

Scenario

- Optimizing current enteral feeding pump
- Need to drive out material variation to improve pump consistency/accuracy
- Need to match physical properties/performance of the legacy tubing used to program the pump

Action

- Define critical material properties and lower batch to batch specification/variation
Problem #2: Matching Pump Performance

Strong correlation to flow rate accuracy over time
($R^2 = 0.88$)

Problem #1: Minimizing Variation

Durometer (Shore A)

Modulus (psi)

ASPECT #2: OPTIMIZED FORMULATION

Case Study

The Development and Application of Extruded Silicone Tubing with Optimized Precision and Consistency for Fluid Management Applications
ASPECT #3: CONSISTENT & PRECISE DIMENSIONAL CONTROL

What Impacts Dimensional Variation?

- Equipment Design
- Inline vs. Crosshead
- Equipment Condition
- Material Properties
- Cure Rate
- Viscosity

Long Term Variation
- Material Changes; Screen Pack Cleanliness; Operator Influence
ASPECT #3: CONSISTENT & PRECISE DIMENSIONAL CONTROL
Long Term Variation

How to Eliminate Variation from…
- Lot to Lot Material Changes
- Screen Cleanliness
- Operator Influence
- Equipment Wear

… Implement Automation!
- Closed Loop Control (w/ Historian)
- Recipe Management
- Limits on User Inputs
- Automated PM Schedules

Extruder

Cure Oven

Pulling/Cutting /Packaging

Inline Measurements

Complete SCADA Control System
ASPECT #3: CONSISTENT & PRECISE DIMENSIONAL CONTROL
Short Term Variation

Significant Short Term Factors

- Die/Head Design
- Line/Oven Configuration
 - Vertical-up, Vertical-down, Horizontal
- Cure Technology Type
 - Hot Air, Short Wave IR, Long Wave IR, UV, Salt Bath, Microwave
- Downstream Handling/Processes
 - Cutting, Printing, Measurement
- Loss of feed pressure
- Screw pulsation

How to Reduce Variation?

- Case by Case...
 - Material Viscosity
 - Cure Rate
 - ID Size
 - Aspect Ratio
Scenario

- Looking to reduce variation in an infusion pump
- Lower dimensional variation = lower dosing variation

<table>
<thead>
<tr>
<th></th>
<th>Target (inch)</th>
<th>Tol. (inch)</th>
<th>% of Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>0.062</td>
<td>± 0.004</td>
<td>6%</td>
</tr>
<tr>
<td>Wall</td>
<td>0.031</td>
<td>± 0.003</td>
<td>10%</td>
</tr>
</tbody>
</table>

Action

1.) Optimize process conditions & equipment to address short term variation
2.) Implement closed loop control w/ SCADA to address long term variation
ASPECT #3: CONSISTENT & PRECISE DIMENSIONAL CONTROL

Case Study

The Development and Application of Extruded Silicone Tubing with Optimized Precision and Consistency for Fluid Management Applications

~50%↓
OVERALL/FINAL CASE STUDY

Scenario
- Developing a new infusion pump
- Study all factors to understand influence on pump performance
- Optimize performance through most cost effective factors

Action
1.) Apply modeling: Identify major factors & define DOE limits
2.) Develop a Custom Compound
 - Study material variation vs. pump performance
3.) Optimize process and equipment to match tubing and formulation
 - Study limits vs. pump performance
Influence of Occlusion

- Min occlusion = +0.3mm

Influence of Back-Pressure

- Little influence from back-pressure
FINAL CASE STUDY
Studying Material and Dimensional Influence

Problem #1: Material Influence

Custom Compound
- Tested & Identified most critical physical property
- But how important considering all factors?

3 Lot Testing

<table>
<thead>
<tr>
<th>Lot #</th>
<th>“Elasticity”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10%</td>
</tr>
<tr>
<td>2</td>
<td>Nominal</td>
</tr>
<tr>
<td>3</td>
<td>+10%</td>
</tr>
</tbody>
</table>

Run Joint DOE
15 Distinct Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>ID (inch)</th>
<th>WT (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Problem #2: Dimensional Influence

ID and Wall Thickness

Lower Limit
Nominal Target
High Limit

Tested & Identified most critical physical property
But how important considering all factors?

Run Joint DOE
15 Distinct Groups
The Development and Application of Extruded Silicone Tubing with Optimized Precision and Consistency for Fluid Management Applications

FINAL CASE STUDY
DOE Results

- **Tested 15 groups measuring pump performance**
- **Tube Factors Analyzed**
 - Inner Diameter
 - Wall Thickness
 - Elasticity/Modulus
- **Pump Factors Analyzed**
 - Fluid Type
 - Operating Temperature
 - Occlusion Distance
 - Pump Speed
- **Studied Main Effects and A x B Interactions**

Many non-significant terms identified. Focus on 2nd order only.
FINAL CASE STUDY
DOE Results

- **Tested 15 groups measuring pump performance**
- **Tube Factors Analyzed**
 - Inner Diameter
 - Wall Thickness
 - Elasticity/Modulus
- **Pump Factors Analyzed**
 - Fluid Type
 - Operating Temperature
 - Occlusion Distance
 - Pump Speed
- **Studied Main Effects and A x B Interactions**

Pareto Chart of the Standardized Effects
(responses is Flow_31min[mL/hr], Alpha = 0.05)

Significant Terms:
1.) Operating Temp.
2.) Occlusion x Wall
3.) Wall x Operating Temp.
4.) Occlusion
CONCLUSION / SUMMARY

- Variation Comes from Many Places
- Application Knowledge is Critical
- Modeling can be a Powerful Tool and Reduce Development Time (Speed-to-Market)
- Customized Formulations can Improve Performance and Reduce Variation
- Many Process Factors to Consider per Product

- Saint-Gobain Compass Technology® addresses key problem statements
 - Intravenous pump consistency and accuracy
 - Speed-to-Market